
Computational Statistics manuscript No.
(will be inserted by the editor)

Introducing libeemd: A program package for
performing the ensemble empirical mode
decomposition

P. J. J. Luukko · J. Helske · E. Räsänen

Received: date / Accepted: date

Abstract The ensemble empirical mode decomposition (EEMD) and its com-
plete variant (CEEMDAN) are adaptive, noise-assisted data analysis methods
that improve on the ordinary empirical mode decomposition (EMD). All these
methods decompose possibly nonlinear and/or nonstationary time series data
into a finite amount of components separated by instantaneous frequencies.
This decomposition provides a powerful method to look into the different pro-
cesses behind a given time series data, and provides a way to separate short
time-scale events from a general trend.

We present a free software implementation of EMD, EEMD and CEEMDAN
and give an overview of the EMD methodology and the algorithms used in
the decomposition. We release our implementation, libeemd, with the aim of
providing a user-friendly, fast, stable, well-documented and easily extensible
EEMD library for anyone interested in using (E)EMD in the analysis of time
series data. While written in C for numerical efficiency, our implementation
includes interfaces to the Python and R languages, and interfaces to other
languages are straightforward.

Keywords Hilbert-Huang transform · Intrinsic mode function · Time series
analysis · Adaptive data analysis · Noise-assisted data analysis · Detrending

P. J. J. Luukko
Nanoscience Center, University of Jyväskylä, FI-40014, Finland
E-mail: perttu.luukko@iki.fi

J. Helske
Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland

E. Räsänen
Department of Physics, Tampere University of Technology, FI-33101, Finland

ar
X

iv
:1

70
7.

00
48

7v
1

 [
st

at
.C

O
]

 3
 J

ul
 2

01
7

2 P. J. J. Luukko et al.

1 Introduction

Empirical mode decomposition (EMD) is a method for decomposing and ana-
lyzing time series data which may be nonlinear and/or nonstationary (Huang
et al, 1998). The EMD procedure decomposes the input signal (the time series
data) into a collection of intrinsic mode functions (IMFs), which are simple
oscillatory modes with meaningful instantaneous frequencies, and a residual
trend. When combined with Hilbert spectrum analysis (HSA) to extract the
instantaneous frequencies of the IMFs, EMD becomes a powerful tool for ana-
lyzing and characterizing the underlying processes behind any given time series
data. The combination of EMD with HSA is often called the Hilbert-Huang
transform (HHT) (Huang and Shen, 2005).

While originally a data analysis tool for Earth sciences (see, e.g., Huang
and Wu (2008) and references therein), the generality of EMD and HHT has re-
sulted in applications in fields ranging from medicine (Pachori and Bajaj, 2011)
to finance (Zhang et al, 2008). It can be used for speech recognition (Huang and
Pan, 2006) and detrending energy-level spectra of quantum systems (Morales
et al, 2011). Given its versatility, it is likely that EMD will continue to find
new problems to solve in all fields of science dealing with empirical data. Hope-
fully future studies will also give EMD a more well-understood mathematical
foundation, which is still somewhat lacking (Huang and Wu, 2008).

The original EMD algorithm has also resulted in many derivative algo-
rithms which improve on the original design and adapt the algorithm to more
specific uses. A recent improvement from the original authors of EMD is en-
semble empirical mode decomposition (EEMD) in which additional noise is
used to better separate different frequency scales into different IMFs without
using subjective selection criteria (Wu and Huang, 2009). The original EEMD
method is not a complete decomposition, since the original signal cannot be
exactly recovered by adding together its EEMD components. Instead, a more
recent variant CEEMDAN (Complete EEMD with Adaptive Noise) by Torres
et al (2011) achieves completeness while improving the algorithm’s robustness
against noisy input signals (Colominas et al, 2012).

The purpose of this work is to provide a fast, generic, well-documented and
easily accessible implementation of EMD, EEMD and CEEMDAN for anyone
interested in using them in their research. Our code library will also hopefully
serve as a basis for implementing existing and future derivatives of EMD. To
foster the use and further development of our program we release it under a
free software license. The source code of our program can be freely downloaded
from https://bitbucket.org/luukko/libeemd.

https://bitbucket.org/luukko/libeemd

Introducing libeemd: A program package for EEMD 3

Fig. 1 The sifting procedure isolates oscillations around the “local mean” of the signal.
First, on the left panel, local extrema (open squares) of the signal (solid line) are located.
Then, upper and lower envelopes (dotted lines) of the signal are formed by connecting the
local maxima and minima, respectively, with a spline function. The mean of these envelopes
(dashed line) is designated as the local mean of the signal. By subtracting the local mean
from the original signal, oscillations with high local frequency are isolated into a new, simpler
and more symmetric signal, shown on the right panel.

2 Algorithms

2.1 Empirical mode decomposition

The basics of the empirical mode decomposition algorithm are documented
well in the literature (Huang et al, 1998; Huang and Wu, 2008; Dätig and
Schlurmann, 2004), but for completeness we recapitulate the general idea. The
target of the EMD procedure is to decompose a signal – in the spirit of the
Fourier series – into a sum of simple components. In contrast to the Fourier
series, these components are not required to be simple sinusoidal functions,
but they are required to have meaningful local frequencies. The components
are called intrinsic mode functions (IMFs), and the requirement of a meaning-
ful local frequency is enforced by requiring two conditions (Huang et al, 1998):
(1) the number of zero crossings and the number of local extrema of the func-
tion must differ by at most one and (2) the “local mean” of the function is
zero. What is meant by a local mean in this case is elaborated below.

At the heart of EMD is the sifting procedure, which extracts the simple
oscillatory components (the IMFs) from the original signal. First, upper and
lower envelopes of the signal are computed by finding the local extrema of the
signal. To construct the upper (lower) envelope, the local maxima (minima)
are connected by a smooth interpolation – typically a cubic spline. Then the
mean of these envelopes is designated as a “local mean” of the signal, which
can be used as a reference that separates the lower frequency oscillations in
the signal (the part included in the local mean) from the highest frequency
oscillations (the oscillations around the local mean). This procedure is shown
schematically in Fig. 1. Note that the separation into “high frequency” and
“low frequency” is now based purely on the rapidity of oscillations in the
original signal. Also, what is considered high frequency in one part of the
signal can be low frequency in another part, since the local mean can oscillate
wildly in some part of the data and change slowly in other parts.

4 P. J. J. Luukko et al.

By subtracting the local mean from the original signal, we can separate the
high (local) frequency oscillations from the rest of the signal. However, this
subtraction can create new local extrema, foiling the requirements set for an
IMF. To actually recover the highest frequency IMF component, the sifting
procedure is applied again and again, until some stopping criterion is fulfilled
and we are left with a sufficiently pure IMF. The choices of stopping criteria
are discussed further in Sec. 2.5. After the first IMF is obtained, it can be
subtracted from the original signal, and the procedure outlined above can be
used to extract the IMF with the second-highest local frequency. This can be
repeated until the residual signal is monotonous, and no further IMFs can be
extracted. This residual, possibly together with the lowest frequency IMFs, can
be used to represent the intrinsic trend of the data. Detecting and removing
such a trend is alone a useful application of EMD for several purposes (Wu
et al, 2007; Morales et al, 2011).

EMD separates different frequency scales of the signal into separate IMFs,
but it is not guaranteed that – when analyzing a data from some natural
process – each IMF represents a physical time scale of the process. Often
ranges of IMFs need to be added together to extract information pertaining to
a single natural time scale (Wu and Huang, 2009), and some IMF components
may represent the properties of measurement noise instead of the underlying
physical process. To assist in selecting the IMFs with a physical meaning
Wu and Huang (2004) have constructed a statistical significance test which
compares the IMFs against a null hypothesis of white noise.

2.2 Detection of extrema and zero slopes

The local extrema of the data sequence, which are needed to form the upper
and lower envelopes, can of course be found by simply comparing consecutive
data points. However, some care is needed in the handling of zero slopes, i.e.,
stretches of strictly equal data points in the sequence. The reference EEMD
library by Wu and Huang (2009) considers consecutive equal data points to
be both maxima and minima, which causes the upper and lower envelopes to
meet at these points. This is probably an unwanted feature since, e.g., a small
deviation at the highest point of a large oscillation can cause the topmost data
points to be equal, causing in turn the lower envelope to jump sharply to meet
the upper envelope at the local maximum, as illustrated in Fig. 2.

Naturally, exactly equal data points in the original signal are likely to be a
result of artificial data or low sample accuracy, but such zero slopes can also
occur in the intermediate steps of the EMD procedure, especially when the
number of samples is low.

To ameliorate these issues with zero slopes, we choose a different convention
for the extrema detection. For a point to be considered a local maximum, the
slope before the data point has to be strictly positive, and the slope after
the data point strictly negative. However, if there is a region of zero slope
between the positive and the negative slopes, the center of the zero slope

Introducing libeemd: A program package for EEMD 5

x
(t
)

t

Fig. 2 Plot highlighting the problem caused by equal consecutive data points in the refer-
ence EEMD implementation by Wu and Huang (2009). The filled circles show an artificial
signal x(t), in which three data points near the top of an oscillation happen to be equal
within sample precision. The squares and the dashed lines show the local minima and the
envelope splines, respectively, as found by the reference EEMD implementation. Because
the middle one of the equal data points is considered both a maximum and a minimum, the
lower envelope spline shoots up sharply, no longer representing a good lower envelope for
the signal. The lower envelope produced by libeemd is shown as a dotted line

region is designated as a single maximum. Likewise, valleys with a flat bottom
are considered to have a single minimum at the center of the flat region. This
convention is also used by another implementation by Torres et al (2011).

2.3 Spline envelopes

There are several ways to interpolate the local extrema to form the upper
and lower envelopes. A cubic spline is considered by most to be the best
trade-off between smooth envelopes and simplicity (Huang and Wu, 2008),
but there are several different kinds of cubic splines. In their review Dätig and
Schlurmann (2004) consider the so-called natural cubic spline the best choice
for data from water waves. We adopted the convention used by the reference
EEMD library by Wu and Huang (2009) and used cubic splines with the “not-
a-knot” end conditions. These splines are somewhat more computationally
intensive to calculate, but unlike with the “natural” end conditions, the splines
are not required to have zero curvature at the ends of the data, which we
consider to be an artificial limitation. For computing the splines we use the
algorithm described by Engeln-Müllges and Uhlig (1996). As the reference
EEMD implementation, our code falls back to linear interpolation (for N = 2)
or polynomial interpolation (for N = 3) if the number of extrema N is too
small for a cubic spline.

More recently effort has been made into using B-splines for the envelopes
to establish a firmer mathematical basis for EMD (Chen et al, 2006). In addi-

6 P. J. J. Luukko et al.

tion, piecewise cubic Hermite interpolation polynomials (PCHIPs) have been
suggested to replace the usual cubic splines to better interpolate highly non-
stationary signals (Shulin et al, 2007). Both of these are considered to be useful
alternatives to be added in the future to libeemd.

2.4 End effects

While cubic splines are very good at interpolating data at the interior of
the data sequence, they perform worse at the ends of the data. This is of
course a problem shared by interpolation in general – at the ends of the data
the interpolation algorithm can only work with the “neighborhood” of data
points on one side of the end, since the other side is missing. This turns the
interpolation problem into an extrapolation one – how to predict how the data
would behave before the start of the sequence? If left unattended, the errors of
the spline interpolation can cause the ends of the computed IMFs to become
corrupted, and as the sifting procedure continues these errors propagate to the
interior to the data.

Several ways have been proposed to mitigate the end effects by adding
artificial extrema to the ends of the data, such as simple wave forms defined
by the extrema near the end (Huang et al, 1998). We have adopted the method
described by Wu and Huang (2009), where additional extrema are added to
the ends of the data by linear extrapolation of the previous two extrema.
However, if the extrapolated extremum is less extremal than the last data
point, the value of the last data point is used as an additional extremum
instead. This method successfully reduces the end effects while avoiding the
possible complications of more complex data extrapolation.

2.5 Stopping criteria

Many ways to decide how many times a signal is sifted to produce a single
IMF have been proposed. The original algorithm by Huang et al (1998) used
a Cauchy-like criterion, in which the sifting is stopped when the normalized
square difference of results from consecutive iterations is sufficiently small.
However, this method is vulnerable to sifting the signal too much so that it
becomes a frequency-modulated signal only and all amplitude variation is lost.
It is also not guaranteed that the final result will fulfill the requirements of
an IMF. Therefore Huang et al (1999) proposed a simpler stopping criteria,
in which iteration is stopped when the number of zero crossings and extrema
differ at most by one and that these numbers stay the same for S consecutive
iterations. This criterion was extensively studied by Huang et al (2003) and
the optimal range for the S-number was found to be from 3 to 8. Our code
supports1 using this stopping criterion for the siftings with a default value

1 In rare cases the finite precision of computer arithmetic can cause the number of zero
crossings or extrema to get stuck oscillating between two consecutive numbers. To avoid

Introducing libeemd: A program package for EEMD 7

of S = 4. In addition, a maximum number of total iterations can be set
to prevent oversifting. By only setting the maximum number of iterations,
EMD can be performed with a fixed number of iterations, which is sometimes
preferred as described by Wu and Huang (2009).

2.6 Ensemble EMD and CEEMDAN

A recently demonstrated improved variant of the EMD method is Ensemble
EMD (EEMD), in which EMD is performed on an ensemble of initial signals,
each perturbed by low-amplitude white noise (Wu and Huang, 2009). The noise
helps the sifting process to avoid mode mixing and to provide more robust and
physically meaningful IMFs. In the end the average of the results is designated
as the true final result, and thus the direct effect of the noise is canceled out.
Computing the EMD of a large ensemble of signals is computationally more
intensive, but this difference in computation time can be reduced significantly
since the separate ensemble members can be computed in parallel.

Because the added noise does not completely cancel out in the averaging
process for any finite ensemble size, EEMD is no longer a strictly complete de-
composition. This issue has been fixed in a EEMD variant called CEEMDAN
(Torres et al, 2011). In CEEMDAN, the averaging over all ensemble mem-
bers is carried separately for each IMF component. By changing the order of
averaging over the ensemble and extracting the next IMF, at each point of
the decomposition procedure the current residual together with the already
extracted IMFs sums exactly (or up to numerical precision) to the original
signal. This small change also seems to improve the algorithm’s efficiency in
recovering an underlying tone from an already noisy input signal (Colominas
et al, 2012).

3 Implementation details

3.1 Low-level C library

The low-level computational methods of libeemd are written in standards-
compliant C99 for numerical efficiency and portability. The C interface to
libeemd is documented in the header file eemd.h distributed with libeemd. All
the methods for computing EMD, EEMD or CEEMDAN can be used directly
from C, but we focus on providing interfaces so that libeemd can be accessed
from more high-level languages which are better suited for data analysis. We
provide complete interfaces to the Python and R languages, which are excellent
modern languages for data analysis tools and other scientific software. In the
future, interfaces to other languages will be considered.

an endless loop or extreme oversifting in this case our implementation relaxes the latter
condition so that a case where only one of the numbers changes by 1 is still considered
stable. This change does not affect the normal operation of EMD.

8 P. J. J. Luukko et al.

For random number generation and basic linear algebra we use routines
provided by the GNU Scientific Library (GSL) (Galassi et al, 2009). For faster
EEMD and CEEMDAN computations with large ensembles the separate en-
semble members are handled in parallel with OpenMP. More elaborate paral-
lelization schemes, which benefit large, multidimensional EEMD calculations,
also exist in the literature (Chang et al, 2011). The library can also be compiled
in single-thread mode if parallelization is not desired.

3.2 Python interface

The libeemd distribution includes a Python interface called pyeemd. This
interface allows the routines in libeemd to be called directly from Python,
using standard Numpy (Oliphant, 2007) arrays for input and output data.
Via pyeemd the routines provided by libeemd can be accessed with a minimal
amount of overhead code. To give a short example, if we have an input signal
stored in a 1D Numpy array (or some other Python sequence type) input, we
can decompose it with EEMD using the code:

import pyeemd

imfs = pyeemd.eemd(input)

Now imfs is a M × N array, where N is the length of input, and the IMFs
it decomposed to are stored in the M rows of imfs, the last row being the
residual. The individual IMFs can then be manipulated easily with the numer-
ous arithmetic tools provided by Numpy. For completing the Hilbert-Huang
transform, the Hilbert transformation routine provided by the Scipy package
(scipy.fftpack.hilbert) can be used. The IMFs can be visualized by any
of the several plotting libraries available to Python, but we also provide a sim-
ple helper routine (pyeemd.utils.plot imfs) for quick visualization of the
results.

The stopping criterion for the decomposition can be set by using the
optional parameters S number and num siftings, corresponding to the S-
number criterion and a maximum number of siftings, respectively, as described
in Sec. 2.5. The default values are S number=4 and num siftings=50. Other
optional parameters that can be used to influence the EEMD decomposition
are ensemble size and noise strength. The parameter ensemble size is the
size of the EEMD ensemble and it defaults to 250. The magnitude of the Gaus-
sian white noise added to the input in EEMD is controlled by noise strength,
which represents the standard deviation of the Gaussian random numbers used
as the noise, relative to the standard deviation of the input. It defaults to set-
ting the noise to have 0.2 times the standard deviation of the signal. This
value was suggested by Wu and Huang (2009) and shown to be a good default
value for many cases by Colominas et al (2012). Computing a simple EMD de-
composition can be done by setting ensemble size to 1 and noise strength

to 0, but we also provide as a shortcut the routine pyeemd.emd.
The pyeemd distribution also includes unit tests which can be used to

ensure that the code is working as intended. These tests can also be used to

Introducing libeemd: A program package for EEMD 9

ensure that our code reproduces the results obtained by the reference EEMD
implementation, except for the case of equal data points described in Sec. 2.2.
For more documentation of the use and internals of pyeemd please see the
documentation files and source code distributed with pyeemd, and the online
documentation at http://pyeemd.readthedocs.org/.

3.3 R interface

In addition to a Python interface, we have written an interface to R in a form
of a complete R package Rlibeemd. A stable version of the package is available
at CRAN2, and the latest development version is also available at GitHub3.
With help of Rcpp package (Eddelbuettel and François, 2011; Eddelbuettel,
2013) the libeemd C library is integrated into R with minimal overhead. Input
data for decomposition can be a numeric vector or an object which can be
coerced to such. Output data is converted to a time series object of class mts

for easier plotting and further analysis. We present a short example using the
UK gas consumption dataset which is a part of the base R dataset collection.
We perform a CEEMDAN decomposition for logarithmic consumption using
default values of the ceemdan function, and plot the resulting IMFs:

library(Rlibeemd)

logarithmic demand of quarterly UK gas consumption

imfs <- ceemdan(log(UKgas))

set the layout and marginals for the plots

par(mfrow = c(2, 2), mar = c(2, 4, 1, 1), oma = c(1, 1, 3, 1),

xaxs = "i")

plot(log(UKgas), ylab = "Observations")

plot(imfs[, 1], ylab = "Seasonal")

Sum IMFs 2 to 5 as one irregular component

plot(ts(rowSums(imfs[, 2:5]), start = start(UKgas), freq = 4),

ylab = "Irregular")

plot(imfs[, 6], ylab = "Trend")

CEEMDAN extracts five IMFs and the residual, which captures the un-
derlying trend. The first IMF contains the seasonal effect whereas rest of the
IMFs contain the irregular part. In the example code, the IMFs number 2
to 5 are combined by taking the sum over the IMFs at each time point. The
resulting irregular component is then defined as a time series object for proper
plotting behavior. The resulting plot can be seen in Fig. 3. More examples can
be found from the documentation distributed with the Rlibeemd package.

2 http://cran.r-project.org/web/packages/Rlibeemd/index.html
3 https://github.com/helske/Rlibeemd

http://pyeemd.readthedocs.org/
http://cran.r-project.org/web/packages/Rlibeemd/index.html
https://github.com/helske/Rlibeemd

10 P. J. J. Luukko et al.

Time

O
bs

er
va

tio
ns

1960 1965 1970 1975 1980 1985

4.
5

5.
5

6.
5

Time

S
ea

so
na

l

1960 1965 1970 1975 1980 1985

−
0.

5
0.

0
0.

5

Ir
re

gu
la

r

1960 1965 1970 1975 1980 1985

−
0.

10
0.

00
0.

10

Tr
en

d
1960 1965 1970 1975 1980 1985

5.
0

5.
5

6.
0

Fig. 3 Example plot produced using Rlibeemd, showing the various components extracted
from UK gas consumption with CEEMDAN.

4 Comparison to other implementations

Several established EMD, EEMD and CEEMDAN implementations are pub-
licly available. Of these the most commonly used ones are the reference EEMD
implementation by Wu and Huang (2009), the EMD toolbox by P. Flandrin’s
group4, the original CEEMDAN implementation by Torres et al (2011) (also
available from P. Flandrin’s home page), the EMD R package by Kim and Oh
(2009), and the hht R package by Bowman and Lees (2014) containing EEMD
and CEEMDAN implementations. There is also a rudimentary Python imple-
mentation of EMD/EEMD included in the Python Time Series Analysis pack-
age (PTSA)5 by the Ohio State University Computational Memory Lab. We
are also aware of an EEMD code for Matlab by Wang et al (2014), but it is only
available in binary form. While the algorithms implemented in libeemd are
implemented also by others (with possible minor variations such as discussed
in Sec. 2.2), our implementation brings several benefits, which we outline in
the following.

Except the packages written for R and the PTSA, all other implementa-
tions mentioned here are written for Matlab. It is very difficult to use routines
written in Matlab from other languages, and using Matlab requires the pur-
chase of a license. Likewise, R codes are mostly only usable on R, and Python
codes in projects using Python (some commercial statistical software such as
SAS and SPSS support R or Python plug-ins). Having a stable C library is
very useful for expanding the user base of EMD, since almost every high-level
language uses C as the low-level language for writing extension modules. The C
interface of libeemd has been designed to make the work of interface builders

4 http://perso.ens-lyon.fr/patrick.flandrin/emd.html
5 http://ptsa.sourceforge.net

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://ptsa.sourceforge.net

Introducing libeemd: A program package for EEMD 11

as easy as possible by only using standard C data types in the public interface.
Having the algorithms written in a low-level language such as C also brings
immediate and substantial speed improvements over implementations using
only interpreted languages.

We would also like to highlight the importance of clearly written, well-
documented and thoroughly tested code, as well as modern programming prac-
tices and proper version control. We have taken effort in making the code of
libeemd easily readable and modifiable by others, making it easier for other
people to use libeemd as a basis for not only new applications of EMD, but
also new variants of the underlying algorithms. The source code of libeemd

is hosted on Bitbucket6, making it easy for users to track changes in the pro-
gram, report issues, and discuss and publish improvements to the program.
Being published under an open-source license, libeemd protects the users’
right to modify the code, fostering the development of better software.

Besides the original CEEMDAN implementation and the R package hht, to
our knowledge there are currently no other publicly available implementations
of CEEMDAN. Our implementation thus also provides the first C and Python
implementations of CEEMDAN, as well as the first parallelized CEEMDAN
implementation.

There are also implementations that focus on computing EMD-like decom-
positions in real time from measurement data, often focusing on specific kinds
of data and using specialized hardware and/or GPU acceleration. Our imple-
mentation focuses on providing a free and generic software implementation of
the EMD algorithms for offline data analysis, so we have not included these
implementations in our comparison.

4.1 Performance comparison

As mentioned before, writing the core algorithm in a low-level language brings
a substantial improvement in numerical performance. To provide an exam-
ple in the case of R, we compare briefly the performance of the R package
hht (Bowman and Lees, 2014) and our Rlibeemd. As input data, we use ECG
(electrocardiogram) data from the MIT-BIH Normal Sinus Rhythm Database7,
which was also used in the original article of Torres et al (2011). We use a value
of 0.2 as the relative standard error of added noise, and the S-number stopping
criterion with S = 4 together with a maximum number of siftings of 50. Length
of the signal is varied from 100 to 2000, and ensemble size is varied from 50
to 500. The maximum number of IMFs to extract (including the residual) is
set to six.

Benchmarking was performed on a system with an Intel Quad-Core i7-4770
3.40 GHz CPU and 16 GB of RAM running on 64 bit Microsoft Windows 7
Enterprise platform. Figure 4 shows how the required computation time for
CEEMDAN scales with the number of data points. Note that the y-axis is

6 https://bitbucket.org/luukko/libeemd
7 http://www.physionet.org/cgi-bin/atm/ATM

https://bitbucket.org/luukko/libeemd
http://www.physionet.org/cgi-bin/atm/ATM

12 P. J. J. Luukko et al.

0.001

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000

T
im

e
(s
ec
on

d
s)

Number of data points

hht

Rlibeemd

Parallel Rlibeemd

Fig. 4 Performance comparison of the R packages hht (function CEEMD) and Rlibeemd

(function ceemdan) for varying number of input data points. The y-axis shows the mean
computation time required to run the CEEMDAN decomposition function. The implemen-
tation from Rlibeemd is approximately two orders of magnitude faster than hht, and it can
be sped up further with parallelization.

logarithmic in order to deal with the different scales of performance. The
performance of Rlibeemd is clearly superior to hht, which is approximately
two orders of magnitude slower than non-parallerized Rlibeemd. The paral-
lerized version of Rlibeemd is approximately four times faster than the non-
parallerized Rlibeemd, which is the expected speedup for a quad-core CPU.
Similar results were obtained also when the ensemble size was varied instead
of the number of data points, and when comparing results for the EEMD
algorithm.

It should be noted that in addition to extracting the IMFs, the CEEMD func-
tion of hht also performs a Hilbert transform on the IMFs in order to obtain
their instantaneous frequencies. However, this additional step should have only
a marginal effect to overall computational time, as the Hilbert transform only
needs to be executed once for the final IMFs.

We also compared the performance of Rlibeemd and the R package EMD (Kim
and Oh, 2009) in performing the ordinary EMD decomposition. With the same
overall parameters as the CEEMDAN comparison, the EMD package was found
to be approximately three orders of magnitude slower than Rlibeemd.

5 Conclusions

We have presented a free software code library which implements the ensemble
empirical mode decomposition (EEMD), of which the regular empirical mode
decomposition (EMD) is a special case, and its complete variant CEEMDAN.

Introducing libeemd: A program package for EEMD 13

Since our library is implemented in C, it can be readily interfaced with a va-
riety of high-level languages for inclusion into existing data analysis software.
As an example of this we have provided complete Python and R interfaces.
By implementing the algorithm in C and providing interfaces to high-level
languages the implementation retains the unmatched speed of a low-level lan-
guage while gaining the ease of use and flexibility of higher level languages.
Our implementation corrects a minor issue with equal data points in the ref-
erence EEMD implementation by Wu and Huang (2009), includes the first op-
timized and parallel implementation of CEEMDAN, and provides a solid and
well-documented basis for existing and future improvements of the (E)EMD
method.

Acknowledgements This work was supported by the Finnish Cultural Foundation, the
Emil Aaltonen Foundation, the Academy of Finland, and the European Community’s FP7
through the CRONOS project, Grant Agreement No. 280879. The authors wish to thank
N. E. Huang for useful discussions.

References

Bowman DC, Lees JM (2014) The Hilbert-Huang Transform: Tools and Meth-
ods. R version 3.1.0 (2014-04-10)

Chang LW, Lo MT, Anssari N, Hsu KH, Huang N, Hwu WM (2011) Parallel
implementation of multi-dimensional ensemble empirical mode decomposi-
tion. In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pp 1621–1624

Chen Q, Huang N, Riemenschneider S, Xu Y (2006) A B-spline approach for
empirical mode decompositions. Adv Comput Math 24:171–195

Colominas MA, Schlotthauer G, Torres ME, Flandrin P (2012) Noise-assisted
EMD methods in action. Adv Adapt Data Anal 04:1250,025

Dätig M, Schlurmann T (2004) Performance and limitations of the Hilbert–
Huang transformation (HHT) with an application to irregular water waves.
Ocean Eng 31:1783–1834

Eddelbuettel D (2013) Seamless R and C++ Integration with Rcpp. Springer,
New York

Eddelbuettel D, François R (2011) Rcpp: Seamless R and C++ integration.
Journal of Statistical Software 40(8):1–18, URL http://www.jstatsoft.

org/v40/i08/

Engeln-Müllges G, Uhlig F (1996) Numerical Algorithms With C. Springer-
Verlag Berlin Heidelberg

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M,
Rossi F (2009) GNU Scientific Library Reference Manual. Network Theory
Limited, UK, URL http://www.gnu.org/software/gsl/

Huang H, Pan J (2006) Speech pitch determination based on Hilbert-Huang
transform. Signal Process 86:792–803

http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://www.gnu.org/software/gsl/

14 P. J. J. Luukko et al.

Huang N, Shen S (2005) The Hilbert-Huang transform and its applications.
Interdisciplinary Mathematical Sciences, World Scientific Publishing Com-
pany, Inc.

Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and
its applications to geophysical studies. Rev Geophys 46

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC,
Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. P Roy Soc Lond A Mat
454:903–995

Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves:
The Hilbert spectrum. Annu Rev Fluid Mech 31:417–457

Huang NE, Wu MLC, Long SR, Shen SSP, Qu W, Gloersen P, Fan KL (2003) A
confidence limit for the empirical mode decomposition and Hilbert spectral
analysis. P Roy Soc Lond A Mat 459:2317–2345

Kim D, Oh HS (2009) EMD: A package for empirical mode decomposition and
Hilbert spectrum. The R Journal 1:40–46

Morales IO, Landa E, Stránský P, Frank A (2011) Improved unfolding by
detrending of statistical fluctuations in quantum spectra. Phys Rev E
84:016,203–016,209

Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20
Pachori RB, Bajaj V (2011) Analysis of normal and epileptic seizure EEG sig-

nals using empirical mode decomposition. Comput Meth Prog Bio 104:373–
381

Shulin L, Haifeng Z, Hui W, Rui M (2007) Application of improved EMD
algorithm for the fault diagnosis of reciprocating pump valves with spring
failure. In: Signal Processing and Its Applications (ISSPA) 2007. 9th Inter-
national Symposium on, pp 1–4

Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete
ensemble empirical mode decomposition with adaptive noise. In: Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International Confer-
ence on, pp 4144–4147

Wang YH, Yeh CH, Young HWV, Hu K, Lo MT (2014) On the computa-
tional complexity of the empirical mode decomposition algorithm. Physica A
400:159–167

Wu Z, Huang NE (2004) A study of the characteristics of white noise using the
empirical mode decomposition method. P Roy Soc Lond A Mat 460:1597–
1611

Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-
assisted data analysis method. Adv Adapt Data Anal 01:1–41

Wu Z, Huang NE, Long SR, Peng CK (2007) On the trend, detrending, and
variability of nonlinear and nonstationary time series. P Natl Acad Sci USA
104:14,889–14,894

Zhang X, Lai KK, Wang SY (2008) A new approach for crude oil price analysis
based on empirical mode decomposition. Energ Econ 30:905–918

	1 Introduction
	2 Algorithms
	3 Implementation details
	4 Comparison to other implementations
	5 Conclusions

